
A Labelled Sequent Calculus for BBI:
Proof Theory and Proof Search

Zhé Hóu, Alwen Tiu and Rajeev Goré

Logic and Computation Group, Research School of Computer Science
The Australian National University, Canberra, ACT 0200, Australia

Abstract. We present a labelled sequent calculus for Boolean BI (BBI),
a classical variant of the logic of Bunched Implication. The calculus is
simple, sound, complete, and enjoys cut-elimination. We show that all
the structural rules in the calculus, i.e., those rules that manipulate labels
and ternary relations, can be localised around applications of certain log-
ical rules, thereby localising the handling of these rules in proof search.
Based on this, we demonstrate a free variable calculus that deals with
the structural rules lazily in a constraint system. We propose a heuristic
method to quickly solve certain constraints, and show some experimental
results to confirm that our approach is feasible for proof search. Addi-
tionally, we conjecture that different semantics for BBI and some axioms
in concrete models can be captured by adding extra structural rules.

1 Introduction

The logic of bunched implications (BI) was introduced to reason about resources
using additive connectives ∧, ∨, →, >, ⊥, and multiplicative connectives >∗, ∗,
−∗ [14]. Both parts are intuitionistic so BI is also Intuitionistic logic (IL) plus
Lambek multiplicative logic (LM). Changing the additive part to classical logic
gives Boolean BI (BBI). Replacing LM by multiplicative classical linear logic
gives Classical BI (CBI). BI logics are closely related to separation logic [17], a
logic for proving properties of programs. Thus, the semantics and proof theory
of BI-logics, particularly for proof search, are important in computer science.

The ternary relational Kripke semantics of BBI-logics come in at least three
different flavours: non-deterministic (ND), partial deterministic (PD), and total
deterministic (TD) [10]. These semantics give different logics w.r.t. validity, i.e.,
BBIND, BBIPD, BBITD respectively, and all are undecidable [3, 10]. The purely
syntactic proof theory of BBI also comes in three flavours: Hilbert calculi [16,
5], display calculi [1] and nested sequent calculi [15]. All are sound and complete
w.r.t. the ND-semantics [5, 1, 15].

In between the relational semantics and the purely syntactic proof theory
are the labelled tableaux of Larchey-Wendling and Galmiche which are sound
and complete w.r.t. the PD-semantics [9, 8]. They remark that “the adapta-
tion of this tableaux system to BBITD should be straightforward (contrary to
BBIND)” [11]. We return to these issues in Section 7.



The structural rules of display calculi, especially the contraction rule on struc-
tures, are impractical for backward proof search. Nested sequents also face similar
problems, and although Park et al. showed the admissibility of contraction in
an improved nested sequent calculus, it contains other rules that explicitly con-
tract structures. Their iterative deepening automated theorem prover for BBI
based on nested sequents is terminating and incomplete for bounded depths,
but complete and potentially non-terminating for an unbounded depth [15]. The
labelled tableaux of Larchey-Wendling and Galmiche compile all structural rules
into PD-monoidal constraints, and are cut-fee complete for BBIPD using a poten-
tially infinite counter-model construction [8]. But effective proof search is only
a “perspective” and is left as further work [8, page 2].

Surprisingly, many applications of BBI do not directly correspond to its
widely used non-deterministic semantics. For example, separation logic mod-
els are instances of partial deterministic models [10] while “memory models” for
BBI are restricted to have indivisible units: “the empty memory cannot be split
into non-empty pieces” [3]. Our goal is to give a labelled proof system for BBI
based upon the ND-semantics which easily extend to the PD- and TD-semantics,
and also these other, more “practical”, semantics.

Our labelled sequent calculus LSBBI for BBI adopts some features from
existing labelled tableaux for BBI [9] and existing labelled sequent calculi for
modal logics [12]. Unlike these calculi, some LSBBI -rules contain substitutions
on labels. From a proof-search perspective, labelled calculi are no better than
display calculi since they require extra-logical rules to explicitly encode the frame
conditions of the underlying (Kripke) semantics. Such rules, which we refer to
simply as structural rules, are just as bad as display postulates for proof search
since we may be forced to explore all potential models. As a step towards our goal,
we show that the applications of these structural rules can be localised around
logical rules. Thus these structural rules are only triggered by applications of
logical rules, leading to a purely syntax-driven proof search procedure for LSBBI .

Our work is novel from two perspectives. Compared to the labelled tableaux
of Larchey-Wendling and Galmiche, we deal with the non-deterministic seman-
tics of BBI, which they have flagged as a difficulty, and obtain a constructive
cut-elimination procedure. Compared to the nested sequent calculus of Park et
al., our calculus is much simpler, and generally gives much shorter proofs. Note
that Park et al. actually gave a labelled variant of their nested sequent calculus,
with the same logical rules as ours. However, their structural rules are still just
notational variants of the original ones, which are lengthy and do not use ternary
relations. We also give some structural rules which we conjecture will give cut-
free labelled calculi for all the other semantics mentioned above. Detailed proofs
of all claims except this conjecture are available in [7].

2 Syntax and semantics of BBI

BBI formulae are defined inductively as follows, where p is an atomic proposition,
>∗, ∗,−∗ are the multiplicative unit, conjunction, and implication respectively:

2



A ::= p | > | ⊥ | ¬A | A ∨A | A ∧A | A→ A | >∗ | A ∗A | A−∗ A

The Kripke semantics of BBI employs a ternary relation of worlds based on
a non-deterministic monoid structure, á la Galmiche and Larchey-Wendling [5].
A relational frame is a triple (M, ., ε), where . ⊆ M×M×M. Following [5],
we write a, b . c instead of .(a, b, c) and also adopt a single unit ε, rather than a
set of units [4]. We therefore have the following conditions for all a, b, c, d ∈M:

Identity ε, a . b iff a = b
Commutativity a, b . c iff b, a . c
Associativity ∃k, (a, k . d)&(b, c . k)⇒ ∃l, (a, b . l)&(l, c . d).
Intuitively, the relation x, y.z means that z can be partitioned into two parts

x and y. The identity condition can be read as every world can be partitioned
into an empty world and itself. Commutativity captures that partitioning z into
x and y is the same as partitioning z into y and x. Finally, associativity means
that if z can be partitioned into x and y, and x can further be partitioned into
u and v, then all together z consists of u, v and y. Therefore there must exist an
element w which is the combination of v and y, such that w and u form z. We
do not restrict this monoid to be cancellative, so x, y . x does not imply y = ε.

Let (M, ., ε) be a relational frame and v : V ar → P(M) be a valuation. A
forcing relation “” between m ∈M and BBI-formulae is defined as follows [5]:

m  >∗ iff m = ε
m  ⊥ iff never
m  > iff always
m  ¬A iff m 6 A

m  P iff P ∈ V ar and m ∈ v(P )
m  A ∨B iff m  A or m  B
m  A ∧B iff m  A and m  B
m  A→ B iff m 6 A or m  B

m  A ∗B iff ∃a, b.(a, b . m and a  A and b  B)
m  A−∗ B iff ∀a, b.((m, a . b and a  A) implies b  B)
A formula A is true at m ∈ M if m  A and is valid if m  A for every

m ∈M in every model ((M, ., ε), v).

3 The labelled sequent calculus for BBI

The inference rules of LSBBI are shown in Figure 1, where P is an atomic
formula, A,B are formulae, w, x, y, z are in the set LV ar of label variables, and
ε is the label constant. We define a mapping ρ : {ε} ∪ LV ar → M from labels
to worlds. We overload the notation in an obvious way so that ε is the empty
world in the semantics and the label constant, while . is the ternary relation in
the semantics and in the calculus. Therefore, from now on, we demand that the
mappings from labels to worlds obeys ∀ρ.ρ(ε) = ε.

A sequent Γ ` ∆ consists of a semi-colon separated multiset Γ of relational
atoms and labelled formulae and a semi-colon separated multiset ∆ of labelled
formulae. Note that relational atoms can appear only in the left-hand-side Γ .

A labelled formula w : A means formula A is true in world ρ(w). A rela-
tional atom (x, y . z), which we always write inside parentheses, is interpreted
as ρ(x), ρ(y) . ρ(z) in the semantics. That is, a labelled formula w : A is true iff
ρ(w)  A, and a relational atom (x, y . z) is true iff ρ(x), ρ(y) . ρ(z) holds.

3



Definition 1 (Sequent Validity). A sequent Γ ` ∆ in LSBBI is valid if for
all (M, ., ε), v and ρ: if every A ∈ Γ is true then so is some B ∈ ∆.

BBI-validity of a formula A corresponds to the sequent validity of ` x : A
where x is an arbitrary label. This notion of validity is common for BBI [10,
15] and CBI [2], but is stronger than BI-validity [16], where A is only required
to be true at the world ε in all BI-models. Using labelled sequents, BI-validity
informally corresponds to the sequent validity of ` ε : A. For example, the
formula >∗ is BI-valid, but it is not BBI-valid.

In our sequents, the structural connective “;” means additive “and” in the
antecedent and means additive “or” in the succedent. Traditional sequents use
“,” in this role, but our notation is consistent with sequent calculi for the family of
Bunched Implication (BI) logics, where “;” is the additive structural connective
and “,” is the multiplicative structural connective. The “,” connective does not
appear explicitly in our sequents but is encoded implicitly in the relational atoms.

In each rule, the formula/relational atom shown explicitly in the conclusion
is the principal formula/relational atom. In the cut rule, the cut-formula is x : A.

The semantics of ∗ involves an existential condition, so rules ∗L and ∗R
incorporate existential and universal quantifiers respectively, conversely for the
rules −∗ L and −∗ R. Therefore, rules ∗L and −∗ R create a premise containing
new relations, and the labels in the created relation must be fresh (except for
the label of the principal formula). Rules ∗R and −∗ L create premises using
existing relations from the conclusion. Further, in rules A and AC , the label w
must be fresh in the premise, as it represents a new partition of the original
world. Contraction admissibility [7] requires the rule AC , a special case of A
with a built-in contraction on (x, y . x). The rule >∗L utilises a substitution
[ε/x] where Γ [y/x] is the result of replacing every occurrence of x in Γ by y.

The additive rules (⊥L, >R, ∧L, ∧R, → L, → R) and the multiplicative
rules (>∗L, >∗R, ∗L, ∗R, −∗ L, −∗ R) respectively deal with the additive/ mul-
tiplicative connectives. The zero-premise rules are those with no premise (id,
⊥L, >R, >∗R). Figure 2 shows an example derivation in LSBBI .

Note that we start (at the bottom) by labelling the formula with an arbitrary
world a. Since provability is preserved by substitutions of labels (Lemma 1),
provability of ` a : F implies provability of ` w : F , for any world w. Thus, if a
formula is provable, then it is true in every world in every model.

3.1 Soundness and completeness

Definition 2 (Sequent Falsifiability). A sequent Γ ` ∆ is falsifiable if some
(M, ., ε), v and ρ make every member of Γ true and every member of ∆ false.

Theorem 1 (Soundness). The labelled sequent calculus LSBBI is sound w.r.t.
the non-deterministic monoidal Kripke semantics for BBI.

For each rule in LSBBI , we show that if the conclusion is falsifiable, then
the premise is falsifiable. We prove the completeness of LSBBI by showing that
every derivation of a formula in the Hilbert system for BBI [5] can be mimicked in
LSBBI , possibly using cuts. Detailed proofs are available in our arXiv paper [7].

4



Identity and Cut:

id
Γ ;w : P ` w : P ;∆

Γ ` x : A;∆ Γ ′;x : A ` ∆′
cut

Γ ;Γ ′ ` ∆;∆′

Logical Rules:

⊥L
Γ ;w : ⊥ ` ∆

Γ [ε/w] ` ∆[ε/w]
>∗L

Γ ;w : >∗ ` ∆

>R
Γ ` w : >;∆

>∗R
Γ ` ε : >∗;∆

Γ ;w : A;w : B ` ∆
∧L

Γ ;w : A ∧B ` ∆
Γ ` w : A;∆ Γ ` w : B;∆

∧R
Γ ` w : A ∧B;∆

Γ ` w : A;∆ Γ ;w : B ` ∆
→ L

Γ ;w : A→ B ` ∆
Γ ;w : A ` w : B;∆

→ R
Γ ` w : A→ B;∆

(x, y . z);Γ ;x : A; y : B ` ∆
∗L

Γ ; z : A ∗B ` ∆
(x, z . y);Γ ;x : A ` y : B;∆

−∗ R
Γ ` z : A−∗ B;∆

(x, y . z);Γ ` x : A; z : A ∗B;∆ (x, y . z);Γ ` y : B; z : A ∗B;∆
∗R

(x, y . z);Γ ` z : A ∗B;∆

(x, y . z);Γ ; y : A−∗ B ` x : A;∆ (x, y . z);Γ ; y : A−∗ B; z : B ` ∆
−∗ L

(x, y . z);Γ ; y : A−∗ B ` ∆
Structural Rules:

(y, x . z); (x, y . z);Γ ` ∆
E

(x, y . z);Γ ` ∆
(u,w . z); (y, v . w); (x, y . z); (u, v . x);Γ ` ∆

A
(x, y . z); (u, v . x);Γ ` ∆

(x, ε . x);Γ ` ∆
U

Γ ` ∆
(x,w . x); (y, y . w); (x, y . x);Γ ` ∆

AC
(x, y . x);Γ ` ∆

(ε, w′ . w′);Γ [w′/w] ` ∆[w′/w]
Eq1

(ε, w . w′);Γ ` ∆
(ε, w′ . w′);Γ [w′/w] ` ∆[w′/w]

Eq2
(ε, w′ . w);Γ ` ∆

Side conditions:

w 6= ε in >∗L, Eq1 and Eq2
the labels x and y do not occur in the conclusion in ∗L and −∗ R
the label w does not occur in the conclusion in A and AC

Fig. 1. The (cut-free) labelled sequent calculus LSBBI for Boolean BI.

Theorem 2 (Completeness). The labelled sequent calculus LSBBI is complete
w.r.t. the non-deterministic monoidal Kripke semantics for BBI.

3.2 Cut elimination

We now state the cut-elimination theorem for our labelled sequent calculus. The
general proof outlined here is similar to the cut-elimination proof for labelled

5



>∗R
(ε, a . a); (a, ε . a); a : A ` ε : >∗ id

(ε, a . a); (a, ε . a); a : A ` a : A
∗R

(ε, a . a); (a, ε . a); a : A ` a : >∗ ∗A
E

(a, ε . a); a : A ` a : >∗ ∗A
U

a : A ` a : >∗ ∗A → R` a : A→ (>∗ ∗A)

Fig. 2. An example derivation in LSBBI .

systems for modal logic [12], i.e., we start by proving a substitution lemma for la-
bels, followed by proving the invertibility of inference rules, weakening admissibil-
ity, and contraction admissibility, before proceeding to the main cut-elimination
proof. As there are many case analyses in these proofs, we only outline the
important parts here. More details are available in our arXiv paper [7].

Given a derivation Π, its height ht(Π) is defined as the length of the longest
branch in the derivation tree of Π. The substitution lemma shows that provabil-
ity is preserved under arbitrary substitutions of labels.

Lemma 1 (Substitution). If Π is an LSBBI derivation for the sequent Γ ` ∆
then there is an LSBBI derivation Π ′ of the sequent Γ [y/x] ` ∆[y/x] where every
occurrence of label x (x 6= ε) is replaced by label y, such that ht(Π ′) ≤ ht(Π).

The admissibility of weakening and contraction on both formulae and re-
lational atoms follows unsurprisingly from our design of the calculus, as does
the invertibility of the inference rules. Note that the rule AC exists for avoiding
contraction on relational atoms when applying the rule A: see [7] for details.

Suppose an application of the cut rule has premise derivations Π1 and Π2

and a cut-formula x : A of size |A|. The cut height is ht(Π1) + ht(Π2) and the
complexity of such a cut rule is (|A|, ht(Π1) + ht(Π2)). If there are multiple
branches in Π1, then ht(Π1) shall be the height of the longest branch, similarly
for ht(Π2). The strict ordering for both parts of the pair is > on natural numbers.

Theorem 3 (Cut-elimination). If Γ ` ∆ is derivable in LSBBI , then it is
also derivable in LSBBI without using the cut rule.

Proof. By induction on the complexity of the proof in LSBBI . We show that
each application of cut can either be eliminated, or be replaced by one or more
cut rules of less complexity. The argument for termination is similar to the cut-
elimination proof for G3ip [13]. We start to eliminate the topmost cut first, and
repeat this procedure until there is no cut in the derivation. We first show that
cut can be eliminated when the cut height is the lowest, i.e., at least one premise
is of height 1. Then we show that the cut height is reduced in all cases in which
the cut formula is not principal in both premises of cut. If the cut formula is
principal in both premises, then the cut is reduced to one or more cuts on smaller
formulae or shorter derivations. Since atoms cannot be principal in logical rules,
finally we can either reduce all cuts to the case where the cut formula is not
principal in both premises, or reduce those cuts on compound formulae until
their cut heights are minimal and then eliminate those cuts. ut

6



4 Localising structural rules

To obtain an effective proof search procedure for LSBBI , we need to restrict
the use of structural rules, which in LSBBI , can permute upwards through all
rules except for id, >∗R, ∗R, and −∗ L. The other logical rules do not rely on
relational atoms, so we can apply them whenever possible. This allows us to
design a more compact proof system where applications of structural rules are
separated into a special entailment relation for relational atoms. We localise the
structural rules Eq1 and Eq2 first, and then localise the other structural rules.

Let r be an instance of a structural rule where the substitution used in the
rule instance is θ: which is the identity substitution except when r is Eq1 or Eq2.
We can view r (upwards) as a function that takes a set of relational atoms (in
the conclusion of the rule) and outputs another set (in the premise). We write
r(G, θ) for the output relational atoms of an instance of r with substitution θ
and with conclusion containing G. Let σ be a sequence of instances of structural
rules [r1(G1, θ1); · · · ; rn(Gn, θn)]. Given a set of relational atoms G, the result of
the (backward) application of σ to G, denoted by S(G, σ), is defined as:

S(G, σ) =

G if σ = [ ]
S(Gθ ∪ r(G′, θ), σ′) if G′ ⊆ G and σ = [r(G′, θ);σ′]
undefined otherwise

Given a σ = [r1(G1, θ1); · · · ; rn(Gn, θn)], we denote with subst(σ) the com-
posite substitution θ1 ◦ · · · ◦ θn, where t(θ1 ◦ θ2) means (tθ1)θ2.

Definition 3. Let G be a set of relational atoms. The entailment relation G `E
u = v holds iff there exists a sequence σ of Eq1 or Eq2 structural rules such that
S(G, σ) is defined, and uθ = vθ, where θ = subst(σ).

The equality entailment does not fully capture the reflexivity, transitivity,
and symmetry of equality. Rather, the structural rule E is used when symmetry
is required to derive an equality. As a second step, we isolate the rest of the
structural rules into a separate entailment relation, as we did with Eq1 and Eq2.

Definition 4. Let G be a set of relational atoms. The entailment relation `R
has the following two forms:

1. G `R (w1 = w2) holds iff there is a sequence σ of E, U , A, AC applications
so that S(G, σ) `E (w1 = w2).

2. G `R (w1, w2.w3) holds iff there is a sequence σ of E, U , A, AC applications
so that (w′1, w

′
2.w

′
3) ∈ S(G, σ) and the following hold: S(G, σ) `E (w1 = w′1),

S(G, σ) `E (w2 = w′2), and S(G, σ) `E (w3 = w′3).

Thus we can move all the structural rules into `R, giving an intermediate
system LS sf

BBI , with changed logical rules shown in Figure 3. We write G||Γ ` ∆
to emphasise that the left hand side of a sequent is partitioned into relational
atoms G and labelled formulae Γ . Note that the entailment `R is not a premise,
but a side condition for the rule to be applicable.

Theorem 4. A sequent Γ ` ∆ is derivable in LSBBI iff it is derivable in LS sf
BBI .

7



G `R (w1 = w2)
id

G||Γ ;w1 : P ` w2 : P ;∆

(ε, w . ε);G||Γ ` ∆
>∗L

Γ ;w : >∗ ` ∆
G `R (w = ε)

>∗R
G||Γ ` w : >∗;∆

S(G, σ)||Γ ` x : A;w : A ∗B;∆ S(G, σ)||Γ ` y : B;w : A ∗B;∆
∗R†

G||Γ ` w : A ∗B;∆

S(G, σ)||Γ ;w : A−∗ B ` x : A;∆ S(G, σ)||Γ ;w : A−∗ B; z : B ` ∆
−∗ L‡

G||Γ ;w : A−∗ B ` ∆

†: σ is a derivation of G `R (x, y . w) ‡: σ is a derivation of G `R (x,w . z)

Fig. 3. Changed rules in LS sf
BBI .

5 Mapping proof search to constraint solving

The intermediate system LS sf
BBI is essentially a variant of LSBBI that packages

structural rules at certain points in the proof search. We can further separate
proof search into two stages: guessing the shape of the derivation tree, and then
checking that each entailment `R can be proved. The latter involves guessing a
relational atom to use in the ∗R or −∗ L rule which also satisfies the equality
constraints in the id and >∗R rules. We formalise this via a symbolic proof
system where the relational atoms in the rules ∗R,−∗ L are selected lazily via the
introduction of free variables, which are essentially existential variables that must
be instantiated to concrete labels satisfying all the constraints in the derivation.

Free variables help to make the right decisions when applying ∗R and −∗ L
rules. That is, suppose the id rule (or analogously the >∗R rule) requires a free
variable x to be equal to a label w, we can satisfy this by globally assigning w to
x. In this way, the search space is reduced, and many applications of structural
rules are guided by the result of id and >∗R rules. See Section 6 for an example.

In our symbolic system FVLSBBI , free variables are denoted by x, y and z.
We use u,v,w for either labels or free variables, and a, b, c for ordinary labels. A
symbolic sequent is a sequent possibly with occurrences of free variables in place
of labels. We shall sometimes refer to the normal (non-symbolic) sequent as a
ground sequent to emphasise that it contains no free variables. The symbolic
proof system FVLSBBI is given in Figure 4. The rules are mostly similar to
LS sf

BBI , but lacking the entailment relations `R . Instead, constraints containing
new free variables are introduced when applying ∗R and −∗ L backwards. Notice
also that in FVLSBBI , the ∗R and −∗ L rules do not compute the set S(G, σ). So
the relational atoms in FVLSBBI are those that are created by ∗L,−∗ R,>∗L.
We refer to a derivation in FVLSBBI as a symbolic derivation.

An equality constraint is an expression of the form G `?R (u = v), and a
relational constraint is of the form G `?R (u,v .w). Constraints are ranged over
by c, c′, c1, c2, etc. Given a constraint c, we write G(c) for the left hand side G of c.
We write G `?R C for either an equality or relational constraint. We write fv(c)
for the set of free variables in c, and fv(C) to denote the set of free variables in
a set of constraints C.

8



id

G||Γ ;w1 : P ` w2 : P ;∆
⊥L

G||Γ ;w : ⊥ ` ∆
>R

G||Γ ` w : >;∆

G; (ε,w . ε)||Γ ` ∆
>∗L

G||Γ ;w : >∗ ` ∆
>∗R

G||Γ ` w : >∗;∆

G||Γ ;w : A;w : B ` ∆
∧L

G||Γ ;w : A ∧B ` ∆
G||Γ ` w : A;∆ G||Γ ` w : B;∆

∧R
G||Γ ` w : A ∧B;∆

G||Γ ` w : A;∆ G||Γ ;w : B ` ∆
→ L

G||Γ ;w : A→ B ` ∆
G||Γ ;w : A ` w : B;∆

→ R

G||Γ ` w : A→ B;∆

G; (a, b .w)||Γ ; a : A; b : B ` ∆
∗L†

G||Γ ;w : A ∗B ` ∆
G; (a,w . c)||Γ ; a : A ` c : B;∆

−∗ R‡

G||Γ ` w : A−∗ B;∆

G||Γ ` x : A;w : A ∗B;∆ G||Γ ` y : B;w : A ∗B;∆
∗R]

G||Γ ` w : A ∗B;∆

G||Γ ;w : A−∗ B ` x : A;∆ G||Γ ;w : A−∗ B; z : B ` ∆
−∗ L\

G||Γ ;w : A−∗ B ` ∆

†: a, b do not occur in the conclusion of ∗L ‡: a, c do not occur in the conclusion of −∗ R
]: x,y do not occur in the conclusion of ∗R \: x, z do not occur in the conclusion of −∗ L

Fig. 4. Labelled sequent calculus FVLSBBI for Boolean BI.

Definition 5 (Constraint systems). A constraint system is a pair (C,�) of
a set of constraints and a well-founded partial order on elements of C satisfying
Monotonicity: c1 � c2 implies G(c1) ⊆ G(c2). It is well-formed if it also satisfies
Unique variable origin: ∀x in C, there exists a unique minimum (w.r.t. �)
constraint c(x) = Gx `?R (u,v .w) s.t. x occurs in (u,v .w), but not in Gx, and
x does not occur in any c′ where c′ � c(x). Such a c(x) is the origin of x.

From now on, we use c(x) for the origin (constraint) of x, as defined above.
We use C to range over constraint systems. We write ci ≺ cj when ci � cj and
ci 6= cj . Further, we define a direct successor relation l as follows: ci l cj iff
ci ≺ cj and there does not exist any ck such that ci ≺ ck ≺ cj .

During proof search, associated constraints are generated as follows. Note
that the labels for constraints correspond to those in Figure 4.

Definition 6. To a given symbolic derivation Π, we associate a set of con-
straints C(Π) as follows where the lowest rule instance of Π is:

id C(Π) = {G `?R (w1 = w2)}
>∗R C(Π) = {G `?R (w = ε)}
∗R C(Π) = C(Π1)∪C(Π2)∪{G `?R (x,y.w)} where the left premise

derivation is Π1 and the right-premise derivation is Π2

−∗ L C(Π) = C(Π1)∪C(Π2)∪{G `?R (x,w.y)} where the left premise
derivation is Π1 and the right-premise derivation is Π2

– If Π ends with any other rule, with premise derivations
{Π1, . . . ,Πn}, then C(Π) = C(Π1) ∪ · · · ∪ C(Πn).

9



Each constraint c ∈ C(Π) corresponds to a rule instance r(c) in Π where c is
generated. The ordering of the rule applications in the derivation tree of Π then
naturally induces a partial order on C(Π). That is, let �Π be an ordering on
C(Π) defined via: c1 �Π c2 iff r(c1) is applied below r(c2) on the same branch.
Obviously �Π is a partial order. The following property of C(Π) is easy to verify.

Lemma 2. Let Π be a symbolic derivation. Then (C(Π),�Π) is a constraint
system. Moreover, if the root sequent is ground, then (C(Π),�Π) is well-formed.

Given a symbolic derivation Π, let C(Π) be a constraint system (C(Π),�Π)
defined as above. From Lemma 2, if C(Π) 6= { }, then there exists a minimum
constraint c, w.r.t. the partial order �Π , such that G(c) is ground.

We now define the solvability of a constraint system. This requires to capture
that (ternary) relational atoms created by the solution must be accumulated
across different constraints, in order to guarantee the soundness of FVLSBBI . A
free variable substitution θ is a mapping from free variables to free variables or
labels with finite domain. We denote with dom(θ) the domain of θ. Given θ and a
set V of free variables, θ � V is the substitution obtained from θ by restricting the
domain to V as shown below left. Given θ and θ′ such that dom(θ′) ⊆ dom(θ),
we define θ \ θ′ as the substitution as shown below right:

x(θ � V ) =

{
xθ if x ∈ V
x otherwise.

x(θ \ θ′) =

{
xθ if x 6∈ dom(θ′)
x otherwise.

Definition 7 (Simple constraints and their solutions). A constraint c is
simple if its left hand side G(c) contains no free variables. A solution (θ, σ) to a
simple constraint c is a substitution θ and a sequence σ of structural rules s.t.

1. If c is G `?R (u = v) then σ is a derivation of G `R (uθ = vθ).
2. If c is G `?R (u,v .w) then σ is a derivation of G `R (uθ,vθ .wθ).

The minimum constraints of a well-formed constraint system are simple.

Definition 8 (Restricting a constraint system). Let C = (C,�) be a well-
formed constraint system, and c be a minimum (simple) constraint in C. Let
(θ, σ) be a solution to c and G′ = S(G(c), σ). Define a function f on constraints:

f(c′) =

{
(G′ ∪ Gθ `?R Cθ) if c′ = (G `?R C) ∈ C \ {c} and c � c′,
c′ otherwise.

The restriction of C by (c, θ, σ), written C � (c, θ, σ), is the pair (C′,�′), where
(1) C′ = {f(c′) | c′ ∈ C \ {c}} and (2) f(c1) �′ f(c2) iff c1 � c2.

Lemma 3. The pair (C′,�′) = C � (c, θ, σ) is a well-formed constraint system.

Definition 9 (Solution to a well-formed constraint system). Let C =
({c1, . . . , cn},�) be a well-formed constraint system. A solution (θ, {σ1, . . . , σn})
to C is a substitution and a set of sequences of structural rules, such that:

If n = 0 then (θ, {σ1, . . . , σn}) is trivially a solution.

10



Let Γ1 := {a2 : c ; a3 : a} and Γ2 := {a3 : a ; a4 : b} in

id1
a2 : c; a3 : a; a4 : b ` x5 : a

id2
Γ1; a4 : b ` x7 : b

id3
a2 : c;Γ2 ` x8 : c

∗R2
a2 : c; a3 : a; a4 : b ` x6 : b ∗ c

∗R1
a2 : c; a3 : a; a4 : b ` a0 : a ∗ b ∗ c

∗L2
a1 : a ∗ b; a2 : c ` a0 : a ∗ b ∗ c

∗L1
a0 : (a ∗ b) ∗ c ` a0 : a ∗ b ∗ c

→ R` a0 : (a ∗ b) ∗ c→ a ∗ b ∗ c

Fig. 5. A symbolic derivation for ((a ∗ b) ∗ c)→ (a ∗ (b ∗ c)).

If n ≥ 1 then there must exist some minimum (simple) constraint in C. For any
minimum constraint ci, let θi = θ � fv(ci), then (θi, σi) is a solution to ci,
and (θ \ θi, {σ1, . . . , σn} \ σi) is a solution to C � (ci, θi, σi).

In Definition 9, suppose a constraint system C = ({c1, · · · , cn},�) has a solu-
tion (θ, {σ1, · · · , σn}). For each constraint ci in C, let c′i be the simple constraint
obtained from ci in the process of restricting C. Then there is a solution (θi, σi)
to c′i, where θi = θ � fv(c′i), and σi ∈ {σ1, · · · , σn}.

Theorem 5 (Soundness). Let Π be a symbolic derivation of a ground sequent

G||Γ ` ∆. If C(Π) is solvable, then G||Γ ` ∆ is derivable in LS sf
BBI .

The proof [7] uses induction on the height of symbolic derivations. Intuitively,
the proof progressively “grounds” a symbolic derivation, root-upwards. At each
inductive step we show that grounding the premises corresponds to restricting
the constraint system induced by the symbolic derivation.

We prove the completeness of FVLSBBI by showing that for every cut-free
derivation Π of a (ground) sequent in LS sf

BBI , there is a symbolic derivation Π ′ of
the same sequent such that C(Π ′) is solvable. Obviously, Π ′ should have exactly
the same rule applications as Π; the only difference is that some relational atoms
are omitted in the derivation, but instead are accumulated in the constraint
system. Additionally, some (new) labels are replaced with free variables. So the
key is to recover the omitted relational atoms in each sequent from the constraint
system while solving constraints. The full proof is in our arXiv paper [7].

Theorem 6 (Completeness). If a sequent has a LS sf
BBI derivation Π, then it

has a symbolic derivation Π ′ such that C(Π ′) is solvable.

6 A heuristic and experimental results

A heuristic. Suppose we want to prove ((a∗b)∗c)→ (a∗(b∗c)). Using FVLSBBI ,
we build a symbolic derivation as in Figure 5 (right associativity for connectives
is assumed). The constraints in the derivation are listed below, with the corre-
sponding rules that generate them:

11



id3: (a1, a2 . a0); (a3, a4 . a1) `?R (a2 = x8)
id2: (a1, a2 . a0); (a3, a4 . a1) `?R (a4 = x7)
∗R2: (a1, a2 . a0); (a3, a4 . a1) `?R (x7,x8 . x6)
id1: (a1, a2 . a0); (a3, a4 . a1) `?R (a3 = x5)
∗R1: (a1, a2 . a0); (a3, a4 . a1) `?R (x5,x6 . a0).

From the constraints generated by id rules, we already know how x5,x7,x8
should be assigned. In the following, we shall write (a1, a2 . a0); (a3, a4 . a1)
as G, (a3,x6 . a0); (a2, a4 . x6) as C, 1 as the identity substitution, and ∅ as
an empty sequence of rule applications. Now it is much easier to solve the con-
straint system with the known information. The last constraint can be solved
by ([a3/x5, w/x6], A((a1, a2 . a0); (a3, a4 . a1),1)), which generates (a3, w .
a0); (a2, a4 . w). The resultant constraint system is restricted to the following:

id3: (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `?R (a2 = x8)
id2: (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `?R (a4 = x7)
∗R2: (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `?R (x7,x8 . w)
id1: (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `?R (a3 = a3).

Now the last constraint is trivially solved by (1, ∅). The second last constraint
can be solved by ([a4/x7, a2/x8], E((a2, a4.w),1)), which generates (a4, a2.w).
The remaining constraints are restricted as below.

id3: (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `?R (a2 = a2)
id2: (a4, a2 . w); (a3, w . a0); (a2, a4 . w); (a1, a2 . a0); (a3, a4 . a1) `?R (a4 = a4)

These constraints are trivially solvable by (1, ∅). Therefore the overall solution to
the original (first) constraint system is ([a3/x5, w/x6, a4/x7, a2/x8], A((a1, a2 .
a0); (a3, a4 . a1),1) · E((a2, a4 . w),1)), the reader can check that this solution
is compliant with our definitions in Section 5.

But there is a simpler way to see that the label w must exist: the two ternary
relational atoms in G manifest that a0 can be split into a2, a3, a4. This is exactly
what C says. For any variant of G that describes the same splitting of a0 as C,
the “internal” node x6 can always be assigned to either an existing label or a
label generated by the associativity rule. In the example, x6 cannot be matched
to any existing label, so we can assign x6 to be a fresh label globally, and add C
to the l.h.s. of the successor constraints in the partial order ≺. Similarly for any
variant of C with the same splitting of a0. The next lemma extends this idea.

Lemma 4. Given constraints c1 l · · · l cn with G = G(c1) = · · · = G(cn) s.t.
the r.h.s. of c1 to cn form a binary tree where every internal node is some free
variable x with c1 � c(x), and the other nodes are non-ε labels: if G′ ⊆ G and G′
forms a binary tree with the same root and leaves, then c1, · · · , cn are solvable.

Experimental results. We used a Dell Optiplex 790 desktop with Intel CORE i7
2600 @ 3.4 GHz CPU and 8GB memory as the platform, and tested the following
provers on the formulae from Park et al. [15]. (1) BBeye: the OCaml prover
from Park et al. based upon nested sequents [15]; (2) Naive (Vamp): translates a

12



Formula BBeye Naive FVLSBBI

(opt) (Vamp) Heuristic

(a−∗ b) ∧ (> ∗ (>∗ ∧ a))→ b d(2) 0 0.003 0.001
(>∗−∗ ¬(¬a ∗ >∗))→ a d(2) 0 0.003 0.000
¬((a−∗ ¬(a ∗ b)) ∧ ((¬a−∗ ¬b) ∧ b)) d(2) 0 0.004 0.001
>∗ → ((a−∗ (b−∗ c))−∗ ((a ∗ b)−∗ c)) d(2) 0.015 0.017 0.001
>∗ → ((a ∗ (b ∗ c))−∗ ((a ∗ b) ∗ c)) d(2) 0.036 0.006 0.000
>∗ → ((a ∗ ((b−∗ e) ∗ c))−∗ ((a ∗ (b−∗ e)) ∗ c)) d(2) 0.07 0.019 0.001
¬((a−∗ ¬(¬(d−∗ ¬(a ∗ (c ∗ b))) ∗ a)) ∧ c ∗ (d ∧ (a ∗ b))) d(2) 0.036 0.037 0.001
¬((c ∗ (d ∗ e)) ∧B) where d(2) 0.016 0.075 0.039
B := ((a−∗ ¬(¬(b−∗ ¬(d ∗ (e ∗ c))) ∗ a)) ∗ (b ∧ (a ∗ >)))
¬(C ∗ (d ∧ (a ∗ (b ∗ e)))) where d(3) 96.639 0.089 0.038
C := ((a−∗ ¬(¬(d−∗ ¬((c ∗ e) ∗ (b ∗ a))) ∗ a)) ∧ c)
(a ∗ (b ∗ (c ∗ d)))→ (d ∗ (c ∗ (b ∗ a))) d(2) 0.009 0.048 0.001
(a ∗ (b ∗ (c ∗ d)))→ (d ∗ (b ∗ (c ∗ a))) d(3) 0.03 0.07 0.001
(a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (d ∗ (a ∗ (b ∗ c)))) d(3) 1.625 1.912 0.001
(a ∗ (b ∗ (c ∗ (d ∗ e))))→ (e ∗ (b ∗ (a ∗ (c ∗ d)))) d(4) 20.829 0.333 0.001
>∗ → (a ∗ ((b−∗ e) ∗ (c ∗ d))−∗ ((a ∗ d) ∗ (c ∗ (b−∗ e)))) d(3) 6.258 0.152 0.007

Table 1. Initial experimental results.

BBI formula into a first-order formula using the standard translation, then uses
Vampire 2.6 [6] to solve it; (3) FVLSBBI Heuristic: backward proof search in
FVLSBBI , using the heuristic-based method to solve the set of constraints.

The results are in Table 1. In the BBeye (opt) column, the d() indicates the
depth of proof search. The other two columns are for the two methods stated
above. We see that naive translation is comparable with BBeye in most cases,
but the latter is not stable. When the tested formulae involve more interaction
between structural rules, BBeye runs significantly slower. The heuristic method
outperforms all other methods in the tested cases.

Nonetheless, our prover is slower than BBeye for formulae which contain
many occurrences of the same atomic formulae, giving (id) instances such as:

Γ ;w1 : P ;w2 : P ; · · · ;wn : P ` x : P ;∆

We have to choose some wi to match with x without knowing which choice satis-
fies other constraints. In the worst case, we have to try each using backtracking.
Multiple branches of this form lead to a combinatorial explosion. Determinising
the concrete labels (worlds) for formulae in proof search in LSBBI or BBeye [15]
avoids this problem. Further work is needed to solve this in FVLSBBI .

Even though we do not claim the completeness of our heuristics method, it
appears to be a fast way to solve certain problems. Completeness can be restored
by fully implementing LSBBI or FVLSBBI . The derivations in LSBBI are gen-
erally shorter than those in the Display Calculus or Nested Sequent Calculus for
BBI. The reader can verify that most of formulae in Table 1 can even be proved
by hand in a reasonable time using our labelled system. The optimisations of
the implementation, however, is out of the scope of this paper.

13



(a, b . c);Γ [c/d] ` ∆[c/d]
P

(a, b . c); (a, b . d);Γ ` ∆
(a, b . c);Γ ` ∆

T

Γ ` ∆

(ε, ε . ε);Γ [ε/a][ε/b] ` ∆[ε/a][ε/b]
IU

(a, b . ε);Γ ` ∆
(a, b . c);Γ [b/d] ` ∆[b/d]

C

(a, b . c); (a, d . c);Γ ` ∆

In T , a, b do occur in the conclusion but c does not
In all substitutions [y/x], x 6= ε

Fig. 6. Some auxiliary structural rules.

7 Conclusions, extensions and further work

Our main contribution is a labelled sequent calculus for BBIND that is sound,
complete, and enjoys cut-elimination. There are no explicit contraction rules in
LSBBI and all structural rules can be restricted so that proof search is entirely
driven by logical rules. We further propose a free variable system to restrict the
proof search space so that some applications of ∗R,−∗ L rules can be guided by
zero-premise rules. Although we can structure proof search to be more manage-
able compared to the unrestricted (labelled or display) calculus, the undecid-
ability of BBI implies that there is no terminating proof search strategy for a
sound and complete system. The essence of proof search now resides in guessing
which relational atom to use in the ∗R and −∗ L rules and whether they need to
be applied more than once to a formula. Nevertheless, our initial experimental
results already raise the hope that a more efficient proof search strategy can be
developed based on our calculus.

An immediate task is to find a complete and terminating (if possible) con-
straint solving strategy. Although we do not have a counter-model construction
procedure for our labelled systems, this aspect has been studied by Larchey-
Wendling using labelled tableaux [8]. The possibility to adapt his method to
BBIND using our calculus is also a future work.

Another interesting topic is to extend our calculus to handle some semantics
other than the non-deterministic monoidal ones. Our design of the structural
rules in LSBBI can be generalised as follows. If there is a semantic condition
of the form (w11, w12 . w13) ∧ · · · ∧ (wi1, wi2 . wi3) ⇒ (w′11, w

′
12 . w

′
13) ∧ · · · ∧

(w′j1, w
′
j2 . w

′
j3) ∧ (x11 = x12) ∧ · · · ∧ (xk1 = xk2), we create a rule:

(w′11, w
′
12 . w

′
13); · · · ; (w′j1, w

′
j2 . w

′
j3); (w11, w12 . w13); · · · ; (wi1, wi2 . wi3);Γ ` ∆

r

(w11, w12 . w13); · · · ; (wi1, wi2 . wi3);Γ ` ∆

And apply substitutions [x12/x11] · · · [xk2/xk1] globally on the premise, where
ε is not substituted. Many additional features can be added in this way. We
summarise the following desirable ones: (1) PD-semantics: the composition of
two elements is either the empty set or a singleton, i.e., (a, b . c) ∧ (a, b . d) ⇒
(c = d); (2) TD-semantics: the composition of any two elements is always defined
as a singleton, i.e., ∀a, b,∃c s.t. (a, b . c); (3) indivisible unit: (cf. Section 1)
(a, b . ε) ⇒ (a = ε) ∧ (b = ε); and (4) cancellative: if w ◦ w′ is defined and

14



w ◦ w′ = w ◦ w′′, then w′ = w′′, i.e., (a, b . c) ∧ (a, d . c) ⇒ (b = d). Note that
(2) and (4) are in addition to (1). The above are formalised in rules P , T , IU ,
C respectively in Figure 6.

The formula (F ∗ F ) → F , where F = ¬(>−∗ ¬>∗), differentiates BBIND
and BBIPD [10] and is provable using LSBBI +P . Using LSBBI +T , we can prove
(¬>∗−∗ ⊥) → >∗, which is valid in BBITD but not in BBIPD [10], and also
(>∗ ∧ ((p ∗ q)−∗ ⊥))→ ((p−∗ ⊥)∨ (q−∗ ⊥)), which is valid in separation models
iff the composition is total [4]. These additional rules preserve cut-elimination.

Oddly, the formula ¬(>∗ ∧ A ∧ (B ∗ ¬(C−∗ (>∗ → A)))), which is valid in
BBIND, is very hard to prove in the display calculus and Park et al.’s method.
We ran this formula using Park et al.’s prover for a week on a CORE i7 2600
processor, without success. Very short proofs of this formula exist in LSBBI or
Larchey-Wendling and Galmiche’s labelled tableaux (this formula must also be
valid in BBIPD). We are currently investigating this phenomenon.

References

1. J. Brotherston. A unified display proof theory for bunched logic. ENTCS, 265:197–
211, September 2010.

2. J. Brotherston and C. Calcagno. Classical BI: Its semantics and proof theory.
LMCS, 6(3), 2010.

3. J. Brotherston and M. Kanovich. Undecidability of propositional separation logic
and its neighbours. In LICS, pages 130–139, 2010.

4. J. Brotherston and M. Kanovich. Undecidability of propositional separation logic
and its neighbours. submitted to the Journal of ACM, 2013.

5. D. Galmiche and D. Larchey-Wendling. Expressivity properties of boolean BI
through relational models. In FSTTCS, pages 358–369, 2006.

6. K. Hoder and A. Voronkov. Comparing unification algorithms in first-order theo-
rem proving. KI’09, pages 435–443. Springer-Verlag, 2009.

7. Z. Hóu, A. Tiu, and R. Goré. A labelled sequent calculus for BBI: Proof theory
and proof search. arXiv:1302.4783, 2013.

8. D. Larchey-Wendling. The formal strong completeness of partial monoidal boolean
BI. submitted to the Journal of Logic and Computation, 2012.

9. D. Larchey-Wendling and D. Galmiche. Exploring the relation between intuition-
istic BI and boolean BI: An unexpected embedding. MSCS, 19(3):435–500, 2009.

10. D. Larchey-Wendling and D. Galmiche. The undecidability of boolean BI through
phase semantics. LICS, 0:140–149, 2010.

11. D. Larchey-Wendling and D. Galmiche. Non-deterministic phase semantics and
the undecidability of boolean BI. ACM TOCL, 14(1), 2013.

12. S. Negri. Proof analysis in modal logic. JPL, 34(5-6):507–544, 2005.
13. S. Negri and J. von Plato. Structural Proof Theory. CUP, 2001.
14. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. BSL, 5(2):215–

244, 1999.
15. J. Park, J. Seo, and S. Park. A theorem prover for boolean BI. In POPL, POPL

’13, pages 219–232, New York, NY, USA, 2013. ACM.
16. D. J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications.

Applied Logic Series. Kluwer Academic Publishers, 2002.
17. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In

LICS, LICS ’02, pages 55–74. IEEE Computer Society, 2002.

15


